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Abstract: In this work we compare three multiscale measures for their ability to 

discriminate between participants having cardiac autonomic neuropathy (CAN) and aged 

controls. CAN is a disease that involves nerve damage leading to an abnormal control of 

heart rate, so one would expect disease progression to manifest in changes to heart rate 

variability (HRV). We applied multiscale entropy (MSE), multi fractal detrended fluctuation 

analysis (MFDFA), and Renyi entropy (RE) to recorded datasets of RR intervals. The latter 

measure provided the best separation (lowest p-value in Mann–Whitney tests) between 

classes of participants having CAN, early CAN or no CAN (controls). This comparison 

suggests the efficacy of RE as a measure for diagnosis of CAN and its progression, when 

compared to the other multiscale measures. 

Keywords: multiscale entropy; multi fractal detrended fluctuation analysis; Renyi entropy; 

heart rate variability; cardiac autonomic neuropathy; disease discrimination 
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1. Introduction 

Cardiac rhythm is controlled by the membrane properties of the sino-atrial node, neuro-hormonal 

and autonomic nervous system (ANS) modulation [1,2]. CAN is a disease often presenting as a 

complication of diabetes, which affects ANS modulation of the heartbeat. CAN is characterised by 

peripheral nerve damage leading to abnormal regulation of the heartbeat by the ANS [3,4] and may 

manifest in up to 60% of individuals with type 2 diabetes at different stages during diabetes disease 

progression [5]. One would therefore expect such a condition to be characterised by changes in HRV, 

which describes the beat to beat (or RR interval) changes and is not concerned with the full details of 

the electrocardiogram (ECG). 

A typical ECG signal is illustrated in Figure 1, and the RR interval is shown as the time between 

successive beats. The letters PQRST are commonly used to identify ECG features. The fiducial point 

or peak of the QRS wave can be identified most easily. Therefore this is used to obtain an RR interval 

tachogram from which HRV can be obtained. The natural rhythm of the human heart is known to vary 

in response to sympathetic and parasympathetic signals. Generally, sympathetic activity decreases the 

RR intervals and decreases variability, whereas parasympathetic activity increases the RR intervals and 

increases variability [6]. HRV is a useful indication of the health of the cardiovascular system, and is 

commonly used in assessing the regulation of cardiac autonomic function [7,8]. A variety of measures 

can be extracted from the RR interval time series, ranging from time series measures, through frequency 

domain measures to more complex non-linear measures [9–11]. All of these can be derived from the RR 

interval time series through suitable mathematical functions. Some examples of time domain measures 

are the standard deviation of the RR intervals obtained from the normal beats of a time series (SDNN), 

and the number of pairs of successive intervals that differ by more than 50 ms divided by the total 

number of intervals (pNN50%). Frequency-domain methods divide the spectral distribution into very 

low, low and high frequency regions. Low frequency (LF) power is believed to be indicative of both 

parasympathetic and sympathetic activity. High frequency (HF) is indicative of parasympathetic 

activity. Very low frequency (VLF) is a sensitive indicator of management of metabolic processes and 

reflects deficit energy states [12]. 

 

Figure 1. A typical ECG signal showing the RR interval. 

Examples of nonlinear measures include fractal and entropy measures. It is this group of measures 

which are examined in this work. In spite of a growing literature illustrating their use in HRV analysis, 
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there is a shortage of empirical comparisons between different nonlinear/multiscale methods, particularly 

in relation to CAN and CAN progression. We examine how changing the value of scaling, length and 

parameters of the fractal and entropy algorithms provides a family of measures, and forms a multiscale 

series. The results of the different permutations of the multiscale measures are compared in terms of 

distinguishing CAN from controls in participants attending the diabetes complications screening clinic 

in Albury, Australia. 

Multi-scale measures are those that provide a series of measures as a function of some scaling 

factor. The idea of multi-scale used in this paper requires some explanation. Not all of the measures 

considered here are multi-scale in the same sense. MSE examines RR intervals at a number of different 

scales in order to provide multiple measures based on the same time series. MFDFA and RE are  

multi-scale in the sense that a parameter is used to control the order or power that a quantity is raised 

to. This can take multiple values and so provides multiple measures. Previous work has compared 

several entropy measures in terms of their efficacy in distinguishing congestive heart failure and 

arrhythmia from normal sinus rhythm [13]. However in this work we aim to compare two commonly 

applied multiscale entropy measures and MFDFA, and focus on a single morbidity, CAN, in its early and 

later stages in asymptomatic individuals with no cardiovascular disease or diabetes. 

2. Methods 

The aim of this work is to determine which, out of a variety of available multi-scale measures, is 

most suitable for detecting CAN, and to elucidate the reasons for the discriminatory power, or lack 

thereof, manifested by these methods. The work reported here used data from the Charles Sturt 

Diabetes Complications Screening Group (DiScRi), Australia [14]. The study was approved by the 

Charles Sturt University Human Ethics Committee and written informed consent was obtained from all 

participants. All recordings were obtained in a temperature stable environment following a 5–10 min rest 

period in a supine position by all participants. The sampling rate was set to 400 samples/s and recordings 

pre-processed according to the method described in Tarvainen [15]. A 20-min lead II ECG recording was 

taken from participants attending the clinic, using a Maclab Pro with Chart 7 software (ADInstruments, 

Sydney, Australia). Participants were comparable for age, gender, and heart rate, and after initial 

screening, those with heart disease, presence of a pacemaker, kidney disease or polypharmacy 

(including multiple anti-arrhythmic medication) were excluded from the study. The same conditions were 

used for each participant. The status of CAN was defined using the Ewing battery criteria [11,16,17], and 

each participant was assigned as either without CAN (71 participants), early CAN (67 participants) or 

definite CAN (11 participants). From the 20-min recording, a 15-min segment was selected from the 

middle in order to remove start up artefacts and movement at the end of the recording. From this 

shorter recording, the RR intervals were extracted. No other information was used in this study. The 

RR interval series for each participant was detrended and the measures used were determined from 

these data [3]. 
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2.1. Multi-Scale Sample Entropy 

The entropy H(X) of an RR interval time series {x1, ..., xn} expresses the uncertainty of the n 

intervals as a random variable X, where: ܪ(ܺ) = −෍݌(ݔ௜)݈݃݋௡
௜ୀଵ (1) .(௜ݔ)݌

The probability pi may be estimated from the RR interval data by discretising the range of values 

for X and dividing the number of times that X falls within its discretising band by n. This is the 

histogram method. Sample entropy generalises this to consider a sequence of m RR intervals  

Xm(i) = {xi, ..., xi+m−1} and estimates a probability for Xm(i). However, the histogram method rapidly 

becomes impractical as the sequence length m is increased, so the probability may be estimated by 

counting instead the number of sequences which are similar when their elements xi are compared and 

the difference is less than a threshold r. The number of sequences cm(i) are counted having length m 

and starting at j (j ≠ i) Xm(j) where each scalar comparison |xi − xj| ≤ r. The total number of sequences 

of length m across the entire series is given by: 

ܿ௠ = ෍ ܿ௠(݅).௡ି௠ାଵ
௜ୀଵ  (2)

The sample entropy can be seen as the probability that a sequence of RR intervals of length m that 

repeats itself within a threshold r, will also repeat itself if the sequence length is extended to m + 1. 

Sample entropy calculates the negative logarithm of the ratio of two measures A and B: ܵܽ݉݊ܧ݌ = ݃݋݈− (3) ,ܤܣ

where B = cm is the number of matches from sequences of RR intervals of length m and A = cm+1 is a 

similar measure calculated using sequences of length m + 1 [18]. MSE extends this concept by using 

coarse grained copies of the original data series: 

௝(ఛ)ݕ = 1߬ ෍ ௜,௝ఛݔ
௜ୀ(௝ିଵ)ఛାଵ  (4)

where τ is the scale factor and 1 ≤ j ≤ n/τ, and the xi of Equation (2) is replaced by yj, so that MSE is a 

function of the scale [18–20]. The implementation used in this work was from PhysioNet [21]. 

2.2. Multi-Fractal Detrended Fluctuation Analysis 

MFDFA is based on DFA, a fractal-like measure that examines the self-similarity properties of a 

time series, in this case a sequence of RR intervals. In the ensuing discussion, we follow the 

implementation of [22], providing here a summary of that work translated from Matlab code into a 

series of equations, for the convenience of the reader. The Matlab code is available online [23]. Given 

a sequence of RR intervals {x1, ..., xn} this is transformed into a random walk by subtracting the mean 

and calculating the cumulative sum: 
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ܺ௞ =෍(ݔ௜ − ௞(ݔ̅
௜ୀଵ . (5)

The transformed series X is divided into sequences of length s and a straight line is fitted to each 

sequence by minimising the sum of the squared errors, to provide a slope and offset. It is possible to 

use higher order polynomials to fit the segments, but in the work we always use a linear fit. The rms 

error of the fit εν is calculated for each segment ν of length m: 

ఔߝ = ඩ ෍ ൫ ௜ܺ − పܺሖ ൯ଶ௠(ఔାଵ)
௜ୀ௠ఔ , (6)

where పܺሖ  is the estimated value of Xi. The mean root mean square (rms) error is found for all segments 

of length m: 

௠ߝ = ඩ 1݊/݉෍ ఔଶ.௡/௠ߝ
ఔୀଵ  (7)

As with the normal techniques for estimation of fractal dimension, these data are visualized as a 

graph where the values of εm are plotted against m, using a logarithmic scale for both axes, and the 

slope of the resulting curve is calculated. This slope is the value of DFA. 

In order to derive a multifractal measure, Equation (3) is modified by substituting an exponent q 

that can be varied as a parameter of the method: 

௤,௠ߝ = ቌ 1݊/݉෍ ఔ௤௡/௠ߝ
ఔୀଵ ቍଵ/௤, (8)

where n/m is the number of segments in the complete series of length m. 

2.3. Renyi Entropy 

RE is naturally a multi-scale measure, as it generalizes the Shannon entropy and includes the 

Shannon entropy as a special case [24]. The efficacy of RE for discriminating stages of AN impairments 

in different scales has been demonstrated [25]. RE is defined as: (ߙ)ܪ = 11 − ߙ ଶ݃݋݈ ൭෍݌௜ఈ௡
௜ୀଵ ൱, (9)

where pi is the probability that a random variable takes a given value out of n values, and α is the 

exponent or order of the entropy measure. When α is varied this provides the multi-scale measure. 

H(0) is simply the logarithm of n. As α increases the measures become more sensitive to the values 

occurring at higher probability and less to those occurring at lower probability, which provides a picture 

of the RR length distribution within a signal. However, the entropy requires an estimate of probabilities, 

and there are a number of ways in which this can be determined. In previous work, we have described 

two main methods of estimating probabilities: the histogram method and the density method [26]. In 
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that work we showed that the density method is superior in terms of providing a measure that can 

discriminate different classes of CAN, without simply duplicating linear measures such as the standard 

deviation of the RR intervals. 

The density method estimates the probability of a sequence of RR intervals of length m using a 

notional density of space around a point, representing the sequence embedded in an m-dimensional 

space. This can be done by comparing other RR intervals in the vicinity of the individual RR sequence 

using a distance measure and considering the two sequences to be similar if each element is less than a 

threshold. For example, the calculation of sample entropy described above counts all RR intervals that 

are closer to the individual RR interval given a specific threshold r. However this depends on choosing 

a suitable value for the threshold. Alternatively, a Gaussian kernel is centred on the individual RR 

interval and all RR intervals are added, weighted by the Gaussian function, based on the distance 

between the individual RR interval and the other RR intervals. The extension to the Gaussian kernel 

method is the density measure, which can be calculated for the individual RR interval with index i, as 

the sum of all contributions from other RR intervals with index j: 

௜ߩ = ෍݁ିௗ௜௦௧೔ೕమଶఙమߨ2√ߪ1 ,௡
௜ୀଵ  (10)

using a distance measure: ݀݅ݐݏ௜௝ଶ = ෍(ݔ௜ା௞ − ௝ା௞)ଶ,௠ݔ
௞ୀଵ  (11)

where σ is the dispersion of the function and replaces the threshold r. This provides a continuous rather 

than a discretised measure. 

The MSE was calculated using the default parameters of sequence length m = 2, threshold r = 0.15, 

and coarse graining factor 1 to 10. As the recordings are only 15 min in length, this restricts the length 

of sequence m and the scale of coarse graining τ. Note that when τ = 1, the measure is equivalent to the 

sample entropy without multi scaling. MFDFA was calculated using integer values of order from −5 to 

+5. A range of scaling exponents similar to MFDFA, α from −5 to +5 was used to determine RE. The 

RE was then calculated using sequence length m = 16 and σ = 0.16 (see above). For each measure, A 

Mann–Whitney test was performed to compare the Normal to the Early group, the Early to the Definite 

group, and the Definite to the Normal group. 

3. Results and Discussion 

Development of algorithms to characterize HRV of healthy and unhealthy subjects has been an 

ongoing endeavor, especially with relation to nonlinear methods as standard measures such as SDNN 

can lead to incorrect interpretation of pathology [27,28]. The proposal of nonlinear methods to address 

the nonlinearity and non-stationarity as well as complexity of HR time signals as led to the introduction 

several methods of which MSE, MFDFA and the multiscale RE have been extensively applied. However 

whether these algorithms have similar or different sensitivities in classifying pathology has not been 

investigated. In previous studies we have shown that there is a loss of HRV with progression of CAN, 

which may be related to continued increases in blood sugar levels [29–31]. 
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Results from the Mann–Whitney test using linear measures of HRV time and frequency domain 

analysis are shown in Table 1. These will be used to put in context the results from the multiscale 

methods. The heading row lists the measure used. The lower three rows in the table report p-values 

obtained from the Mann–Whitney test. The first row corresponds to a comparison of normal and early 

CAN, (N vs. E). The second row contains results of early CAN vs. definite CAN (E vs. D), and the 

third row definite CAN vs. normal (D vs. N). These results are all below 0.05, so suggest the separation 

of these classes is possible using any one of these measures. However, these measures will be further 

assessed by using receiver operating characteristic (ROC) analysis, as this draws attention not only to 

the separation of classes, but also to the effect of false positives and false negatives. 

Table 1. Results of Mann–Whitney test for comparison between different classes of 

participants using time and frequency domain measures. All results are significant at the  

p < 0.05 level. Comparisons shown are Normal vs. Early, Early vs. Definite, and  

Definite vs. Normal. 

Scale SDNN pNN50% LF power (ms2) HF power (ms2) 

N vs. E 0.000 0.002 0.000 0.001 
E vs. D 0.011 0.002 0.017 0.024 
D vs.N 0.000 0.000 0.000 0.000 

Results from ROC analysis for time and frequency domain HRV measures are shown in Table 2. 

Here a value of 0.5 implies that there is no discriminating power, while a value of 1 is the maximum. 

The entries in the Table having a value above 0.8 all correspond to the comparison between definite 

and normal classes of participants. These results suggest that these standard measures are able to 

distinguish these two classes but not to reliably distinguish early CAN from either normal or definite CAN. 

Table 2. Area under the ROC curve for comparison between different classes of 

participants using common time and frequency domain measures. Results > 0.8 are shown in 

bold face. Comparisons shown are normal vs. early, early vs. definite, and definite vs. normal. 

Scale SDNN pNN50% LF power (ms2) HF power (ms2) 

N vs. E 0.302 0.352 0.282 0.334 
E vs. D 0.261 0.237 0.275 0.287 
D vs.N 0.869 0.891 0.888 0.837 

Summary statistics for the MSE are shown in Table 3. The heading row contains the scales used in 

the analysis, and range from 1 to 10 RR intervals. There are rows for the upper quartile, median and 

lower quartile, and groups are labelled as N for normal, E for early CAN, and D for definite, according 

to the result of the Ewing tests. Of note is the relatively large inter-quartile range of participants in the 

definite group, compared to other groups. The median value for each group is similar for most of the 

scales, with some exceptions. The median for the normal group, using a scale of 1 (one RR interval) is 

low compared to other groups (1.855 compared to 1.953 or 1.929). The median for the normal group 

using a scale of 6 or 8 is also low compared to the other groups. 
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Table 3. Summary statistics for different classes of participants (N—Normal, E—Early 

and D—Definite) using MSE. Headings in the row designated as “scale” provide the 

number of RR intervals used to derive the measure. Values are provided for the upper 

quartile, median, and lower quartile. 

 Scale 1 2 3 4 5 6 7 8 9 10 

N 

Upper 2.018 2.069 2.011 1.918 1.922 1.846 1.813 1.709 1.642 1.569 

Median 1.855 1.983 1.889 1.791 1.764 1.648 1.631 1.519 1.439 1.339 

Lower 1.700 1.770 1.610 1.621 1.513 1.428 1.352 1.277 1.199 1.066 

E 

Upper 2.068 2.128 2.035 1.961 1.937 1.930 1.902 1.781 1.722 1.625 

Median 1.953 1.972 1.872 1.827 1.758 1.812 1.682 1.598 1.531 1.437 

Lower 1.815 1.855 1.753 1.588 1.617 1.584 1.477 1.426 1.337 1.190 

D 

Upper 2.140 2.137 2.129 2.015 2.066 2.018 1.805 1.761 1.767 1.762 

Median 1.929 1.928 1.904 1.762 1.706 1.748 1.645 1.659 1.581 1.551 

Lower 1.610 1.737 1.636 1.504 1.668 1.441 1.516 1.242 1.199 1.154 

Results from the Mann–Whitney test are shown in Table 4. Only three results are significant at the  

p < 0.05 level, and these are all for normal vs. early comparisons, using a sequence lengths of one 

(equivalent to the sample entropy), six and eight RR intervals. These significant results reflect the 

differences in median observed in Table 3 and discussed above. The low number of significant results 

cast doubt upon the sensitivity of this method to indicate any useful discrimination of CAN even for 

larger data sets. 

Table 4. Results of test for comparison between different classes of participants using 

MSE. Results at the p < 0.05 level are shown in bold face. Comparisons shown are Normal 

vs. Early, Early vs. Definite, and Definite vs. Normal. Of interest is also that none of the 

scale factors for MSE distinguished between normal and definite CAN as was the case for 

the linear HRV measures. This suggests the linear and nonlinear contributions to the 

tachograms may vary with disease progression. 

Scale 1 2 3 4 5 6 7 8 9 10 

N vs. E 0.035 0.361 0.376 0.450 0.369 0.028 0.143 0.032 0.083 0.156
E vs. D 0.746 0.509 0.872 0.782 0.936 0.819 0.647 0.652 0.882 0.661
D vs.N 0.661 0.812 0.665 0.976 0.740 0.420 0.749 0.455 0.307 0.270

Results from ROC analysis are shown in Table 5. Only three entries in the Table have a value above 

0.6 and these are exactly the same entries as those with p < 0.05 in Table 4. These results offer little 

evidence that MSE is able to discriminate classes of participants. 

Table 5. Area under the ROC curve for comparison between different classes of 

participants using MSE. Results > 0.6 are shown in bold face. Comparisons shown are 

Normal vs. Early, Early vs. Definite, and Definite vs. Normal. 

Scale 1 2 3 4 5 6 7 8 9 10 

N vs. E 0.602 0.545 0.543 0.537 0.544 0.606 0.571 0.604 0.584 0.569
E vs. D 0.529 0.559 0.515 0.525 0.507 0.520 0.542 0.540 0.513 0.540
D vs. N 0.538 0.522 0.538 0.502 0.530 0.572 0.529 0.567 0.592 0.599
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Summary statistics for MFDFA are shown in Table 6. The heading row contains the values of q 

from Equation (8), varying from −5 to +5 [22]. There are rows for the upper quartile, median and 

lower quartile, and groups are labelled as N for Normal, E for Early CAN, and D for Definite, 

according to the result of the Ewing tests. For positive values of q the medians are similar between the 

different classes and most are close to 0.3. For negative values of q, values of MFDFA are largest for 

Definite CAN and smallest for Normal, suggesting that these measures may be able to differentiate 

between the different classes. 

Table 6. Summary statistics for different classes of participants (N—Normal, E—Early 

and D—Definite) using MFDFA. Headings in the row labelled “q-order” denote the 

exponent used in Equation (8). Values are provided for the upper quartile, Median, and 

lower quartile. 

 q-order −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 

N 

Upper 0.081 0.081 0.084 0.091 0.119 0.191 0.294 0.353 0.381 0.390 0.396

Median 0.040 0.043 0.047 0.062 0.103 0.166 0.234 0.272 0.291 0.285 0.289

Lower 0.010 0.016 0.027 0.046 0.086 0.140 0.186 0.209 0.215 0.218 0.218

E 

Upper 0.130 0.129 0.120 0.121 0.132 0.207 0.303 0.376 0.402 0.403 0.401

Median 0.073 0.074 0.078 0.081 0.112 0.176 0.258 0.303 0.293 0.302 0.295

Lower 0.025 0.029 0.037 0.054 0.088 0.135 0.199 0.243 0.240 0.231 0.217

D 

Upper 0.181 0.179 0.171 0.148 0.142 0.213 0.330 0.402 0.435 0.441 0.448

Median 0.132 0.132 0.130 0.128 0.122 0.184 0.257 0.316 0.336 0.339 0.335

Lower 0.053 0.057 0.063 0.071 0.109 0.143 0.180 0.206 0.209 0.165 0.130

Table 7 shows the results of the Mann–Whitney test on values obtained using MFDFA. Significant 

results at the p < 0.05 level were obtained for most of the negative values of q, for comparison between 

Normal and Early, and between Definite and Normal classes of participants, but not for any of the 

comparisons between Early and Definite CAN. This suggests that this method is able to distinguish 

CAN from controls, and even recognize those in the Early class as having CAN. The consistent nature 

of the low p-values for a range of values of parameter q suggests that this approach is able to yield 

results that are useful in discrimination of both early and definite CAN from Normal (controls). 

Table 7. Results of Mann–Whitney test for comparison between different classes of 

participants using MFDFA variables calculated from RR interval series. Results at the p < 0.05 

level are shown in bold face. Comparisons shown are Normal vs. Early, Early vs. Definite, 

and Definite vs. Normal. 

q-order −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 

N vs. E 0.065 0.018 0.004 0.011 0.108 0.282 0.141 0.068 0.156 0.375 0.500 
E vs. D 0.281 0.201 0.118 0.080 0.196 0.618 0.777 0.861 1.000 0.957 0.989 
D vs. N 0.054 0.019 0.004 0.001 0.014 0.296 0.302 0.342 0.553 0.585 0.695 

Of interest is the observation that measures most successful in discriminating classes were all from 

the negative side of the spectrum. Examining Table 7 shows that not a single measure using a positive 

value for q was able to achieve p < 0.05. The best result was for q = −2, providing p < 0.001 for D vs N. 
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Comparing this with the measure using q = +2, we observe that the latter is related to the standard 

deviation of rms errors involved in fitting straight line segments across all sequences in a single time 

series of RR intervals. Conversely, the measure using q = −2 is related to the standard deviation of the 

reciprocal of rms errors, while the measure for q = −3 is related to the kurtosis of the reciprocal of rms 

errors. The relative success of the measures for negative q suggests that the transformation involved in 

the inverse, maps these values of rms error into a space where disease classes are more distinct.  

Results from ROC analysis are shown in Table 8. These results support the conclusion that negative 

values of q are more useful than positive values. Consistent with the results of the Mann–Whitney test 

in Table 7, these results suggest that the most easily distinguished classes are Definite and Normal. 

The results presented in Table 8 are larger than those for the linear measures of Table 5, approaching 

0.8 for q of −3 and −2. AUC values greater than 0.8 can be considered to have clinical significance, so 

some of the results shown here are promising. Also, several of the tests comparing Early CAN with 

other classes provided results above 0.6, suggesting detection of Early CAN. It should be noted that the 

AUC is equivalent to the Mann–Whitney U-statistic: the figures used in Table 7 are p-values, whereas 

the figures used in Table 8 are comparable to the value of the Mann–Whitney U-statistic. In addition, 

the equivalence is subject to a number of assumptions, including the independence of samples, the 

distribution of false positives (FPs) being Gaussian, and similar variance of the two samples [32]. 

Table 8. Area under the ROC curve for comparison between different classes of 

participants using MFDFA variables calculated from RR interval series. Results > 0.7 are 

shown in bold face. Comparisons shown are Normal vs. Early, Early vs. Definite, and 

Definite vs. Normal. 

q-order −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 

N vs. E 0.589 0.614 0.640 0.622 0.577 0.552 0.571 0.588 0.568 0.543 0.532

E vs. D 0.598 0.616 0.642 0.659 0.618 0.545 0.526 0.516 0.500 0.505 0.501
D vs. N 0.673 0.710 0.762 0.797 0.720 0.594 0.593 0.585 0.553 0.549 0.535

Results for RE, based on probabilities calculated using the density method, are shown in Table 9. 

The heading row contains the values of the exponent parameter α used in Equation (9), which varies 

from −5 to +5. The results for α = 0 are not shown because, due to normalization, the entropy 

calculated using this value always results in unity. Because all values of RE calculated in this way are 

close to 1, it is difficult to discern any pattern from these data. However, notice that for negative values 

of α, RE is greater for Normal and smaller for Definite, and for positive values of α the opposite is true. 
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Table 9. Summary statistics for different classes of participants (N—Normal, E—Early 

and D—Definite) using RE. Headings in the row labelled “exponent” denote α as used in 

Equation (9). Values are provided for the upper quartile, Median, and lower quartile. 

 Exponent −5 −4 −3 −2 −1 +1 +2 +3 +4 +5 

N 

Upper 1.230 1.202 1.163 1.107 1.038 0.998 0.996 0.995 0.994 0.993 

Median 1.087 1.063 1.043 1.021 1.007 0.998 0.992 0.989 0.986 0.985 

Lower 1.032 1.023 1.013 1.005 1.001 0.997 0.983 0.977 0.972 0.969 

E 

Upper 1.138 1.109 1.072 1.034 1.008 0.998 0.997 0.997 0.996 0.996 

Median 1.031 1.021 1.012 1.005 1.001 0.998 0.996 0.995 0.994 0.993 

Lower 1.005 1.003 1.001 1.000 0.999 0.997 0.993 0.991 0.989 0.988 

D 

Upper 1.105 1.082 1.052 1.020 1.003 0.998 0.998 0.997 0.997 0.997 

Median 1.002 1.001 1.000 0.999 0.999 0.998 0.997 0.997 0.997 0.996 

Lower 1.000 0.999 0.999 0.998 0.998 0.998 0.996 0.996 0.995 0.995 

Table 10 shows the result on the Mann–Whitney tests for RE. All of the comparisons made between 

Normal and Early, and between Definite and Normal, were significant at the p ≤ 0.001 level. Also, a 

good number of those for the comparison of Early to Definite were significant, more so for positive 

values of the exponent α parameter. RE results are also more consistent across groups, with results 

associated with a negative exponent α parameter decreasing with disease progression and vice versa. 

The difference between negative and positive values for the exponent α has been explored in our 

previous work [26]. In that work, we showed that although positive values of α provide higher 

discrimination of classes, with corresponding lower p-values, the entropy values resulting from 

positive exponents were highly correlated with the standard deviation. While the standard deviation is 

a useful measure of HRV, it falls into the category of linear measures of HRV discussed above, and is 

correspondingly simpler to calculate than RE. The standard deviation has also been shown to be less 

discriminatory for disease condition [28]. Therefore RE based on positive values of α is of less interest. 

The measures based on negative values of α are more interesting since they clearly discriminate between 

classes, but may provide information complimentary to that derived from time domain measures such as 

the standard deviation. 

Table 10. Results of Mann–Whitney test for comparison between different classes of 

participants using RE variables calculated from RR interval series. Results at the p < 0.05 

level are shown in bold face. Comparisons shown are Normal vs. Early,  

Early vs. Definite, and Definite vs. Normal. 

Exponent −5 −4 −3 −2 −1 +1 +2 +3 +4 +5 

N vs. E 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
E vs. D 0.063 0.059 0.061 0.051 0.036 0.056 0.038 0.041 0.037 0.034 
D vs. N 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Results from ROC analysis are shown in Table 11. All values calculated for the Disease vs. Normal 

test show AUC greater than, or close to 0.8, indicating clinical significance. Results comparing Early 

CAN with the other classes show promise in discriminating the early stages of CAN (r2 = 0.723). RE 

appears to be useful for discriminating the Early class from the others, although values calculated 
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using positive values of α appear to show better separation. The use of RE based on negative values of 

α, in conjunction with the standard deviation, would therefore be indicated as a powerful test for Early 

CAN. Thus a combination of HRV measures to discriminate between CAN subtypes and CAN 

progression may provide useful clinical information as it includes results from both linear and 

nonlinear measures [33,34]. 

Table 11. Area under the ROC curve for comparison between different classes of participants 

using RE variables calculated from RR interval series. Results > 0.7 are shown in bold. 

Comparisons shown are Normal vs. Early, Early vs. Definite, and Definite vs. Normal. 

Exponent −5 −4 −3 −2 −1 +1 +2 +3 +4 +5 

N vs. E 0.657 0.658 0.660 0.667 0.685 0.705 0.715 0.720 0.721 0.723 
E vs. D 0.669 0.672 0.670 0.678 0.691 0.674 0.689 0.686 0.690 0.692 
D vs. N 0.792 0.794 0.798 0.801 0.821 0.828 0.847 0.854 0.859 0.862 

4. Conclusions 

Traditional HRV analysis is based on the assumptions of linearity, stationary and equilibrium nature 

of heart rate time signals. Nonlinear and multiscale studies applying MSE, MFDFA and RE have 

indicated a high level of complexity in HRV dynamics based on the observation of a power law 

relationship when viewing the power spectral density for varying time scales. Hence traditional HRV 

analysis using time and frequency domain are often not sufficient to characterize the complex 

dynamics inherent in the heart rate time series [25,28,35]. However, this work is not intended as a 

definitive comparison between traditional and multiscale measures, and in no way diminishes the 

usefulness of the former. In previous work, we compared RE with classical measures based on the time 

domain and frequency domain of single RR intervals [33,34,36]. In that work we showed the efficacy 

of the RE as a complimentary measure that can extend and enhance the information that may be 

gleaned from sequences of RR intervals characterized by time and frequency analysis. In this work we 

show that RE has superior discriminatory power to MSE and MFDFA. 

Multiscale measures of HRV have generated a great deal of interest but a systematic approach is 

required in order to identify appropriate measures that may be of benefit in the context early 

identification of disease is of clinical importance to the practitioner. In this work we compared three 

approaches that yield multiscale measures, and evaluated their potential for discriminating different 

classes of CAN. We found that MSE afforded no useful discrimination between disease categories. In 

contrast, MFDFA provided a set of measures that were clearly able to discriminate these classes, but 

only when using negative values of the parameter q, that is, the inverse of the rms errors arising from 

fitting straight line segments to sequences of RR intervals. This suggests a transformation that can be 

applied in the calculation of MFDFA, which maps data into a new space of rms error values where 

these measures are more coherent, in the sense of disease groups occupying similar space. This is an 

important outcome, although further work is required to fully articulate the implications of this finding. 

Using RE we were able to demonstrate a very strong separation of disease classes across all values 

of the parameter α, showing a very robust measure that can be used to identify CAN, especially early 

CAN, where treatment intervention is most effective. This conclusion is supported by low p-values 
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obtained from the nonparametric Mann–Whitney test, and by results from ROC analysis. The 

physiological meaning of the measures such as these is not currently clear. Entropy in general is 

known to quantify the randomness of a system, and the RE measure H(1) is equivalent to the Shannon 

entropy, but it should also be noted that in this paper RE was calculated for sequences of 16, rather 

than single RR intervals, which complicates interpretation. For our dataset the choice of 16 beat 

sequences was optimal and suggests that this is an important time scale, which reflects the period of 

possible nonlinear oscillations involved in the pathophysiology of CAN progression [37]. What can be 

said, therefore, is that sequences of this length measured by RE can carry information of both 

sympathetic and parasympathetic functions of the autonomic system. In doing so, the value of α 

chosen will of necessity be sensitive to different aspects of sympathovagal balance, which may reflect 

changes in the baroreflex responsiveness due to CAN progression. Further, the decrease in entropy for 

negative values of α may reflect the loss of nonlinear dynamics naturally inherent as part of the cardiac 

rhythm and therefore loss of capacity of the heart to respond to different physiological demands [38]. 

Although participants were comparable for age, gender, and heart rate, they were not fully matched 

and this may be a limitation of this study. 
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